National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
3D printed microstrip patch antenna
Medek, Petr ; Vašina, Petr (referee) ; Láčík, Jaroslav (advisor)
The bachelor thesis deals with the issue of inhomogeneous substrates of microwave patch antennas. The aim of this work was to find such a distribution of the permittivity of the substrate of a linearly polarized patch antenna, which would be possible to achieve an extension of the impedance bandwidth to an antenna with the same effective permittivity. The investigated patch antenna has a square shape, is linearly polarized, and is powered by a coaxial power supply. Few types of permittivity distribution are presented and compared with an antenna with a substrate with an adequate effective permittivity. For each antenna, the dimensions of the patch are adjusted so that the antenna is designed at a medium frequency of 2.45 GHz. Furthermore, an antenna with a constant permitivity with patch dimensions is designed and the permittivity of the substrate is adjusted so that the required frequency is achieved. In the two investigated styles, we observe an extension of the impedance bandwidth to the antenna with adequate effective permittivity in the order of hundreths of percent, which was subsequently verified by manufacturing and measuring.
Antenna array to determine positions of airplanes
Zelenka, Pavel ; Pokorný, Michal (referee) ; Raida, Zbyněk (advisor)
The project is aimed to design an antenna array for an aircraft positioning system at an airport. The system operates at frequencies 1030 MHz and 1090 MHz. The antenna is also used by the DME/TACAN system operating in frequency range from 1025 MHz to 1150 MHz. The required impedance bandwidth of the antenna array is 125 MHz, i.ee from 1025 MHz to 1150 MHz. The theoretical part of the thesis analyses properties of different patch antennas and discusses the possibility of extending the impedance bandwidth. The practical part is focused on the development of the numerical model of the broadband stacked patch antennas. In addition, properties of the 3-element and 4-element antenna array are compared. At the end, results of the thesis are summarized.
3D printed circularly polarized patch antenna
Drápal, Jakub ; Kaděra, Petr (referee) ; Láčík, Jaroslav (advisor)
The bachelor thesis deals with circularly polarized patch antennas. In this work, circular polarization is achieved by inhomogenous substrate. The first part summarizes the basic theoretical knowledge about the patch antennas, the shapes of the patch antennas, the excitation methods and the generation of circular polarization. In the next section, the design of a circularly polarized patch antenna on an inhomogeneous substrate is described, and several antenna concepts are proposed and compared with each other and with a conventional antenna. The effect of shaping the inclusions and their gradation in the substrate and the insertion of the inclusions around the centre conductor in the substrate is investigated. The last section is devoted to the realization of the designed antennas by 3D printing method and comparison of simulations from ANSYS HFSS software with measurements of the antennas.
3D printed microstrip patch antenna
Medek, Petr ; Vašina, Petr (referee) ; Láčík, Jaroslav (advisor)
The bachelor thesis deals with the issue of inhomogeneous substrates of microwave patch antennas. The aim of this work was to find such a distribution of the permittivity of the substrate of a linearly polarized patch antenna, which would be possible to achieve an extension of the impedance bandwidth to an antenna with the same effective permittivity. The investigated patch antenna has a square shape, is linearly polarized, and is powered by a coaxial power supply. Few types of permittivity distribution are presented and compared with an antenna with a substrate with an adequate effective permittivity. For each antenna, the dimensions of the patch are adjusted so that the antenna is designed at a medium frequency of 2.45 GHz. Furthermore, an antenna with a constant permitivity with patch dimensions is designed and the permittivity of the substrate is adjusted so that the required frequency is achieved. In the two investigated styles, we observe an extension of the impedance bandwidth to the antenna with adequate effective permittivity in the order of hundreths of percent, which was subsequently verified by manufacturing and measuring.
Antenna array to determine positions of airplanes
Zelenka, Pavel ; Pokorný, Michal (referee) ; Raida, Zbyněk (advisor)
The project is aimed to design an antenna array for an aircraft positioning system at an airport. The system operates at frequencies 1030 MHz and 1090 MHz. The antenna is also used by the DME/TACAN system operating in frequency range from 1025 MHz to 1150 MHz. The required impedance bandwidth of the antenna array is 125 MHz, i.ee from 1025 MHz to 1150 MHz. The theoretical part of the thesis analyses properties of different patch antennas and discusses the possibility of extending the impedance bandwidth. The practical part is focused on the development of the numerical model of the broadband stacked patch antennas. In addition, properties of the 3-element and 4-element antenna array are compared. At the end, results of the thesis are summarized.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.